

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

High Resolution Neutron Cross Section Measurements at GELINA

Institute for Reference Materials and Measurements (IRMM) Geel, Belgium

> http://www.irmm.jrc.be http://www.jrc.cec.eu.int

EC - JRC - IRMM

Institute for Reference Materials and Measurements (IRMM)

- Multi-disciplinary research institute
- Structured around five research units
 - Reference Materials (RM)
 - Isotope Measurements (IM)
 - Food Safety and Quality (FSQ)
 - Scientific Quality and Strategy (SQS)
 - Neutron Physics (NP)

The Mission of the Neutron Physics Unit

4

Provide European <u>safety authorities</u> and <u>industry</u> with <u>neutron reaction data</u> for:

- The safety assessment of nuclear installations and the nuclear fuel cycle
- The *feasibility* study and *development* of waste transmutation facilities and innovative reactor systems

GELINA

Pulsed white neutron source

 $(1 \text{ meV} < \text{E}_{n} < 20 \text{ MeV})$

Neutron energy by <u>Time-Of-Flight</u> (TOF)

- Multi-user facility
- 12 Flight Paths with varying L (8 400 m)
- The measurement stations have special equipment to perform:
 - Total cross section measurements
 - Partial cross section measurements

GELINA

Compression Magnet

→ compressed pulse length ~ 1 ns

Neutron Production

- e⁻ accelerated to $E_{e-,max} \approx 140 \text{ MeV}$
- (e⁻, γ) Bremsstrahlung in U-target (rotating & Hg-cooled)
- (γ, n) , (γ, f) in U-target
- Low energy neutrons by water moderator in Be-canning

Neutron Production

Frequency

: 100 MeV : 1ns : 40 – 800 Hz

Measurement stations

Direct spectrumModerated spectrum

TOF-Measurements Total and Partial Cross-Sections

We need to adapt the flight path length and operation conditions

to the required resolution and neutron flux

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

Contribution to CRP "Reference data for Neutron Activation Analysis"

- New evaluation for ^{nat}Cd (IAEA, Moxon)
 - total and capture cross section
 - Thermal and RRR

• New evaluation for ¹⁹⁷Au

- total and capture cross section
- Thermal, RRR and URR

New evaluation for ⁵⁵Mn (ORNL)

- total and capture cross section
- RRR and URR

• Total and capture cross section measurements on W (INFN Bari)

- ^{nat}W + enriched isotopes
- RRR

• Total and capture cross section measurements on Zr (INFN Bari)

- ^{nat}Zr + enriched isotopes
- RRR

New evaluation for ^{nat}Cd

Vienna, CRP_NAA, May, 2007

New evaluation for ^{nat}Cd

Туре	Station		Frequency	Thickness ^{nat} Cd	
	Distance	Angle	-	atoms/barn	mm
Transmission	50 m	+ 9°	50 Hz	1.20 10 ⁻¹	25.00
	50 m	+ 9°	50 Hz	5.40 10 ⁻⁴	0.12
	50 m 50 m 50 m	+ 9° + 9° + 9°	400 Hz 400 Hz 400 Hz	2.34 10 ⁻² 9.32 10 ⁻³ 5.40 10 ⁻⁴	5.00 2.00 0.12
	25 m	- 9°	50 Hz	2.50 10 ⁻⁴	solution
	25 m	- 9 ⁰	50 Hz	9.34 10 ⁻³	2.00
	25 m	- 9 ⁰	50 Hz	3.40 10 ⁻⁴	0.08
	25 m	- 9 ⁰	50 Hz	1.40 10 ⁻⁴	0.03
	25 m	- 9 °	400 Hz	1.20 10 ⁻¹	25.00
Capture	10 m	+ 18°	50 Hz	9.34 10 ⁻³	2.00
	10 m	+ 18°	50 Hz	3.40 10 ⁻⁴	0.08
	10 m	+ 18°	50 Hz	1.40 10 ⁻⁴	0.03
	30 m 30 m 30 m	0° 0° 0°	400 Hz 400 Hz 400 Hz	4.67 10 ⁻³ 2.36 10 ⁻³ 1.10 10 ⁻³	1.00 0.50 0.23

Combine transmission & capture and use samples with different properties

- \Rightarrow reduction of bias effects due to:
 - Resolution
 - Sample properties
 - Normalization of capture data

- Analysis of cross section data < 1eV
- Final evaluation
- Study impact of new evaluation on results of NAA and interpretation of integral benchmark data

<u>Neutron Resonance Capture Analysis</u> NRCA

H. Postma and P. Schillebeeckx, Archaeometry, 2004

NRCA : Elemental Composition of Artefacts

im

NRCA : Characterisation of Reference Materials ¹⁰³Rh metal disc

	Natural abundance (wt %)	Relative Amount (wt %)		
¹⁰³ Rh	100	99.5137		
¹⁸¹ Ta	99.988	0.0337	(0.0029)	
¹⁹¹ lr ¹⁹³ lr	37.3 62.7	0.0870 0.1478	(0.0033) (0.0076)	
¹⁸² W ¹⁸³ W ¹⁸⁶ W	26.3 14.3 28.6	0.0552 0.0302 0.0613	(0.0027) (0.0028) (0.0025)	
¹⁹⁷ Au	100	0.0059	(0.0011)	

Impurities contribute for 0.5 % to the observed count rate in the thermal energy region
¹⁰³Rh(n_{th},γ) cross section is requested with an accuracy < 2%